Skip to main content

Accounting

What AI Means for the Accounting Profession: Part II

We see a number of products that are running crude AI today and vendors that are pretty far along in their use of AI. Getting products that apply to small and medium businesses are more of a challenge, but we see efforts at Intuit, Xero, BQE Core, ...

artificial intelligence brain circuit thinkstock 100528006 primary idge 1  58c94eaeb50c8

[In his column last month (May 2018), Randy explored the “Why and How of Artificial Intelligence,” with a focus on the positives and negatives of AI for accounting firms and professionals.]

From the June 2018 Issue.

 

Artificial Intelligence has matured from technology buried in computer science labs using complex coding techniques to more common algorithms and supporting technologies used as part of the design strategy of new generation products. Many of the developers have known of AI techniques for years but did not have a practical way to apply the algorithms because the compute overhead was too high, the sample of data was too small and the number of techniques that needed to be applied made the code too complex. With centralized computing in SaaS applications and cloud data centers, AI has become much more practical and accurate.

So how do Artificial Intelligence approaches work? They use:

What does artificial intelligence mean to the practice of accounting and to accountants? We have several working examples available:

  • Accounting – Zoho Zia (Zoho Intelligent Assistant) workflow analysis, best time to contact, automatically research and suggest data to complete client records, email sentiment analysis.
  • Auditing – Mindbridge.
  • Financial services – Kasisto, Moneystream.
  • Sales – Salesforce PredictionIO.
  • Self-writing applications – Crane.ai.

We see a number of products that are running crude AI today and vendors that are pretty far along in their use of AI. Getting products that apply to small and medium businesses are more of a challenge, but we see efforts at Intuit, Xero, BQE Core, Citrix ShareFile, Thomson, CCH and most other products that apply to the CPA profession and to small and medium businesses.

As development continues and Artificial Intelligence transitions from an emerging technology to a mainstream technology, vendors will choose from many open source and proprietary suites that have Artificial Intelligence capabilities or they will develop their own algorithms inside their products. Examples today include:

The best example of tools for accounting that are working today is:

  • IBM Watson – this tool has been configured for analysis of tax, as well as analysis of core financial and operational data by KPMG
  • SAS – Visual Investigator cost $1B to develop. David Stewart, Director, Financial Crimes & Compliance of SAS, suggests 50-70% of banks’ compliance spend is on AML. Financial firms spend 4% now and will spend about 10% in 2022.
  • Zoho Zia (Zoho Intelligent Assistant) workflow analysis, best time to contact, automatically research and suggest data to complete client records, email sentiment analysis

 

Continue reading online at: www.cpapracticeadvisor.com/12407031

Here’s a summary of what you need to know about Artificial Intelligence:

Key Information

TECHNOLOGY: Artificial Intelligence

Why is the new technology better?

It is a method of data analysis that automates analytical model building

How can you do this today?

AWS, Azure, Google Cloud AI, IBM Watson, SAS

Risks

Wrong data set, conclusion unguided

Where/when to use

When data can answer a specific question

How much?

Can be up to $10K per hour, or free on open source

When expected in mainstream

Simple AI now, fake AI common in current promotions, usable AI 4-6 years

Displaced technology or service

Repetitive or analytical human labor

Other resources

CPAPA, CSO

Recommended Next Steps

Watch for applications that claim they have Artificial Intelligence. Do the applications truly exhibit learning? Are they rules or forms based and limited? If so, they may not be AI. Do they improve over time? Does more data make them more accurate? Can the applications make new conclusions without additional programming? If so, they may be truly be AI?

Just like Machine Learning (covered in an earlier article in this series), what you are trying to filter out is products based on rules, forms or pattern recognition that is programmed to recognize each specific form/task and make a decision based on recognizing the form or task. You want the system to accept inputs of all kinds, recognize new data, learn about the data, and make conclusions that provide insight. Like the human race, it is hard to predict where AI will take the capabilities of machines and computers. As many of you have heard me say before, computing can be used for good or bad. I tend to look at the bright side of life as we are reminded by Monty Python here.

See inside June 2018

Dry-Docking: A Ship-Owner’s Accounting Dilemma

The accounting treatment for the dry-docking process has been debated for a long time may be because of the complications associated with the nature of the process. The debate mainly revolved around whether to capitalize the dry-docking costs or to ...

Previous

Gender Wage Gap is 10% Larger for Self-Employed

While there is an extensive body of research that focuses on workers in corporate America, little is known about the millions of Americans that work for themselves. As more employees plan to leave their 9-5s in pursuit of self-employment the world is ...

Next